Exercices Calcul littéral

1 Vocabulaire

a) Traduire les nombres suivants par une phrase utilisant les mots somme, produit, facteur, terme, différence....

$A = 2 \times x + 7$	$B = 25 \times (8 - x)$	$C = a (8 + 9 \times a)$	$D = a \times k - b \times k$	$E = (x - 7)^2$

b) Traduire les phrases suivantes par une formule

A est le produit de x et de la somme de 7 et de y

B est le produit de -5 par la somme de x et de -7

C est la différence du produit de a par 9 et du produit de 8 par b

2 Réduire une expression

Simplifier si possible les expressions suivantes :

Shiphire si possiole les expressions survaites.				
$A = 15 \times a$	B = 15 + a	C = 3a + 2a	$D = 3a \times 2a$	$E = x \times x$
F = x + x	$G = x^2 + x$	H = x - x	$I = x^2 \times x$	J = 2x + 8 + 5x
$K = x - 5 \times 3 + 7x$	$L = 3x^2 + 5x + 7$	$7x^2 - 2x$ N	$M = x^2 \times x^3$	$N = 2x \times 8 \times 5x$
$O = x \times 5 + 3 \times 7x$	$P = 3x^2 \times 5x + 7$	$7x^2 \times 2x + 7$ Q	$Q = 2a \times a - 2 \times a + a \times 3a$	$R = 6 - 3 \times x + x \times 5 - 9$

3 Règle parenthèses

- a) Rappeler les règles de suppression des parenthèses
- b) Supprimer les parenthèses puis réduire l'expression

$$A = (a + b) - (2a - b) + (-a + 3b)$$

$$B = (x^2 - 3x + 5) - (2x^2 - 5x + 2)$$

$$C = -(2x^2 - x + 3) + (-2 + x) - (2x - 1)$$

4 Formule k(a+b) = ka + kb

Oue signifie « Développer une expression » et « Factoriser une expression » ?

Développer :	Factoriser
	B = 4x + 16
B = 2 x(5 - 3 x)	$D = x^2 - 3 x$
$E = -3(x^2 - 2x + 5)$	$F = 2a^2 - 8 a$

$\boxed{5}$ Formule (a + b)(c + d)

Développer, réduire et ordonner les expressions suivantes :

11/	1	
A = (x+3)(2x+5)	B = (a-5)(2a+3)	C = (7-2x)(3x-5)
D = (-2x+3)(7-3x)	E = (-2 - x)(-5 - 2x)	

6 Utilisation des 3 règles précédentes

Développer, réduire et ordonner les expressions suivantes :

(préciser à chaque ligne du calcul la règle utilisée)

$$A = (x+3)(2x+5) - 5(x+2)
C = -(2x^2 - x + 3) + (-2x+3)(7-3x)$$

$$B = 2a(a-4) - (a-5)(2a+3)
D = -(7-2x)(3x-5) - 3(x^2-2x+5)$$

Corrigé Exercices calcul littéral

1 Vocabulaire

a) A est une somme.

Le 1^{er} terme est 7 et le 2^{ème} terme est le produit de x par 2

B est un produit.

Le 1^{er} facteur est 25 et le $2^{\text{ème}}$ facteur est la différence de 8 et de x

C est un produit.

Le 1^{er} facteur est 8 et le 2^{ème} facteur est la somme de 8 et du produit de 9 par a

D est une différence.

Le 1^{er} terme est le produit de a par k et le 2^{ème} terme le produit de b par k

E est un produit.

Le 1^{er} facteur est la différence de x et de 7 et le 2^{ème} facteur est aussi la différence de x et de 7

b)
$$A = x \times (7 + y)$$

$$B = -5(x-7)$$

$$C = a \times 9 - 8 \times b$$

2 Réduire une expression

$A = 15 \times a$	B = 15 + a	C = 3a + 2a	ı	$D = 3a \times 2a$		$E = x \times x$
A = 15 a	irréductible	C = 5a		$D = 6 a^2$		$E = x^2$
F = x + x	$G = x^2 + x$	H = x - x		$I = x^2 \times x$		J = 2x + 8 + 5x
F = 2 x	irréductible	H = 0		$I = x^3$		J = 7 x + 8
$K = x - 5 \times 3 + 7x$	$L = 3x^2 + 5x + 7x^2$	$x^{2} - 2x$	$M = x^2 >$	$\langle x^3 \rangle$	N = 2	$2x \times 8 \times 5x$
K = 8 x - 15	$L = 10 x^2 + 3 x$		$M = x^5$		N = 8	$80 x^2$
$O = x \times 5 + 3 \times 7x$	$P = 3x^2 \times 5x + 7x^2$	$2 \times 2x + 7$	$Q = 2a \times$	$a - 2 \times a + a \times 3a$	$R = \epsilon$	$6-3\times x+x\times 5-9$
O = 26 x	$P = 29x^3 + 7$		$Q = 5a^2$	– 2a	R = 2	2x - 3

3 Règle parenthèses

Lorsqu'un signe – précède une parenthèse on peut enlever cette parenthèse et ce signe – à condition de changer tous les signes à l'intérieur de cette parenthèse

$$a - (b + c + d) = a + b + c + d$$
 $a - (b + c + d) = a + b + c - d$

Lorsqu'un signe + précède une parenthèse on peut enlever cette parenthèse et ce signe + sans rien changer a + (b + c + d) = a + b + c + d a + (b + c + d) = a + b + c + d

Attention : s'il n'y a pas de signe devant le nombre qui est avant la parenthèse cela signifie que ce nombre est précédé de + .

Exemple a - (b + c) = a - (+b + c) donc a - (b + c) = a - b - c

$$A = (a + b) - (2a - b) + (-a + 3b)$$

$$A = a + b - 2a + b - a + 3b$$

$$A = -2a + 5b$$

$$B = (x^{2} - 3x + 5) - (2x^{2} - 5x + 2)$$

$$B = x^{2} - 3x + 5 - 2x^{2} + 5x - 2$$

$$B = -x^{2} + 2x + 3$$

$$C = -(2x^{2} - x + 3) + (-2 + x) - (2x - 1)$$

$$C = -2x^{2} + x - 3 - 2 + x - 2x + 1$$

$$C = -2x^{2} - 4$$

4 Formule k(a+b) = ka + kb

« Développer une expression » : passer d'un produit à une somme

« Factoriser une expression » : passer d'une somme à un produi

		Develop
A =	5(x+2)	

$$A = 5 \times x + 5 \times 2$$
$$A = 5 x + 10$$

$$C = -3(x^2 - 2x + 5)$$

$$C = -3 \times x^2 + 3 \times 2x - 3 \times 5$$

$$C = -3x^2 + 6x - 15$$

Développement

B =
$$2 x(5-3 x)$$

B = $2 x \times 5 - 2 x \times 3 x$

$$B = 10 x - 6 x^2$$

D = 4 x + 16

$$D = 4 \times x + 4 \times 4$$

$$D = 4 (x + 4)$$

$$F = 2a^2 - 8 a$$

$$F = 2a \times a - 2a \times 4$$

= 2a (a - 4)

Factorisation

$$E = x^2 - 3 x$$

$$E = x \times x - 3 \times x$$

$$E = x (x - 3)$$

|5| Formule (a + b)(c + d)

Développer, réduire et ordonner les expressions suivantes :

$$A = (x+3)(2x+5)$$

$$A = x \times 2x + x \times 5 + 3 \times 2x + 3 \times 5$$

$$A = 2 x^2 + 5 x + 6 x + 15$$

$$A = 2 x^2 + 11 x + 15$$

$$D = (-2x + 3)(7 - 3x)$$

$$D = -2 x \times 7 + 2 x \times 3 x + 3 \times 7 - 3 \times 3 x$$

$$D = -14 x + 6 x^2 + 21 - 9 x$$

$$D = 6 x^2 - 23 x + 21$$

$$B = (a-5)(2a+3)$$

$$B = a \times 2a + a \times 3 - 5 \times 2a - 5 \times 3$$

$$B = 2a^2 + 3a - 10a - 15$$

$$B = 2a^2 - 7a - 15$$

$$E = (-2 - x)(-5 - 2x)$$

$$E = 2 \times 5 + 2 \times 2 x + x \times 5 + x \times 2 x$$

$$E = 10 + 4 x + 5 x + 2 x^2$$

$$E = 2 x^2 + 9 x + 10$$

$$C = (7-2x)(3x-5)$$

$$C = 7 \times 3 \ x - 7 \times 5 - 2 \ x \times 3 \ x + 2 \ x \times 5$$

$$C = 21 x - 35 - 6 x^2 + 10 x$$

$$C = -6 x^2 + 31 x - 35$$

6 Utilisation des 3 règles précédentes

$$A = (x+3)(2x+5) - 5(x+2)$$

$$A = (2x^2 + 11x + 15) - (5x + 10)$$
 ex $\boxed{5}$

$$A = 2 x^2 + 11 x + 15 - 5 x - 10$$

$A = 2 x^2 + 6 x + 5$

$$B = 2a(a-4) - (a-5)(2a+3)$$

$$B = (2a^2 - 8a) - (2a^2 - 7a - 15)$$
 ex $\boxed{5}$

$$B = 2a^2 - 8a - 2a^2 + 7a + 15$$

B = -a + 15

$$C = -(2x^2 - x + 3) + (-2x + 3)(7 - 3x)$$

$$C = -2x^2 + x - 3 + (-2x \times 7 + 2x \times 3x + 3 \times 7 - 3 \times 3x)$$

$$C = -2 x^2 + x - 3 - 14 x + 6 x^2 + 21 - 9 x$$

$C = 4 x^2 - 22 x + 18$

$$D = -(7-2x)(3x-5) - 3(x^2-2x+5)$$

$$D = -(6x^2 - 23x + 21) - (3x^2 - 6x + 15)$$

$$D = -6 x^{2} + 23 x - 21 - 3 x^{2} + 6 x - 15$$

$$D = -9 x^{2} + 29 x - 36$$

développement (a + b)(c + d) et k(a + b)règle parenthèses

développement (a + b)(c + d) et k(a + b)règle parenthèses

règle parenthèses et (a + b)(c + d)règle parenthèses

(a + b)(c + d) et k(a + b + c) règle parenthèses