Déterminer les primitives des fonctions a) f définie sur \mathbb{R} par f (t) = $(7 \text{ t} - 5)^2$ b) f définie sur \mathbb{R} par f (x) = $2 (3 \text{ x} - 2)^3$;		
Déterminer les primitives des fonctions suivantes: a) f définie sur] 1, $+\infty$ [par f (x) = $\frac{-4}{x-1}$ b) f définie sur] $-\infty$, $\frac{1}{2}$ [par :		
$f(t) = \frac{-4}{2 t - 1} \text{ c) f définie sur }]-2, +\infty [par : f(x) = 2 x + 1 - \frac{1}{2 x + 3}]$		
Déterminer les primitives des fonctions suivantes: a) f définie sur $I =]-\infty$, 0 [par f (x) = $x^2 - \frac{1}{x^2}$ b) f définie sur		
$\int 0 dx = 0$ [par $f(x) = 1 - \frac{1}{x^2} - \frac{3}{x^3}$ c) f définie sur $\int -\infty$, 3 [par : $f(x) = -\frac{1}{(x-3)^2}$.		
2 Déterminer les primitives des fonctions suivantes:		
a) f définie sur [0, + ∞ [par f (t) = $\frac{2}{1-2}$ t + $\frac{3}{(1-2)^2}$ b) f définie sur IR par : f (x) = $\frac{x}{(3x^2+1)^2}$ 3 Fraction rationnelle à décomposer Soit la fonction f définie sur] - 3, 2 [par : f(x) = $\frac{x^2-x+4}{x^2-x-6}$.		
Fraction rationnelle à décomposer Soit la fonction f définie sur] – 3 , 2 [par : $f(x) = \frac{x^2 - x + 4}{x^2 - x - 6}$.		
1° Déterminer trois nombres réels a, b, c tels que, pour tout nombre réel x de] – 3, 2[: $f(x) = a + \frac{b}{x+2} + \frac{c}{x-3}$		
2° En déduire les primitives de f sur] – 2, 3 [.		
Déterminer les primitives de a) f définie sur \mathbb{R} par f (t) = $-2 \sin (3 t + \frac{\pi}{4})$. b) f définie sur \mathbb{R} par f (t) = $3 \cos (2 t + \frac{\pi}{3})$		
5 Déterminer les primitives de la fonction ,f définie sur] $-\frac{\pi}{2}$; 0 [par : f (x) = tan x		
Déterminer les primitives de a) f définie sur \mathbb{R} par f (x) = $\sin x \cos^3 x$. b), f définie sur \mathbb{R} par f(t) = $\cos t \sin^2 t$.		
Avec les formules dEuler Déterminer les primitives des fonctions suivantes après avoir linéarisé f (t).		
a) f définie sur IR par : f (t) = cos ³ t. b) f définie sur IR par : f(t) = sin 2 t cos 3 t c) f définie sur IR par f(x) = sin 2 x cos x. d) f définie sur IR par : f (t) = cos ³ 2t.		
8 Déterminer les primitives des fonctions suivantes:		
a) f définie sur $I =]-\infty$, 3 [par f (t) = $\frac{2}{\sqrt{3-t}}$ b) f définie sur $I =]-\frac{1}{3}$, $+\infty$ [par f (x) = $-\frac{3}{\sqrt{3} + 1}$		
9 Fonction exponentielle Déterminer les primitives des fonctions suivantes:		
a) f définie sur IR par : f (t) = $-e^{-2t} + 3e^{t}$. b) f définie sur IR par : f(x) = $e^{3x} + e^{x} - 1$.		
c) f définie sur IR par f (t) = e^{-2t+2} . d) f définie sur IR par : f (x) = 3 x e^{x^2+1} .		
Coefficients à trouver Déterminer deux nombres réels a et b tels que la fonction $F: x \longmapsto (a x + b) e^x$ soit une primitive su $(a x + b) e^x$ soit une primitive su $(a x + b) e^x$		
IR de la fonction $f: x \mapsto (3 x - 1) e^x$. 11 La bonne primitive dans le bon intervalle 1° Soit f la fonction définie sur $1 - \frac{1}{2}$, $+ \infty par : f(x) = \frac{2}{2 x + 1}$. Déterminer la		
primitive F de f qui s'annule pour x = 5. 2° Soit g la fonction définie sur $]-\infty$, $-\frac{1}{2}[$ par : $g(x)=\frac{2}{2}\frac{1}{x+1}$ Déterminer la		
primitive G de g qui s'annule pour $x = -3$.		
Coefficients et primitive à trouver Soit f la fonction définie sur] 2, + ∞ [par : $f(x) = \frac{2 x^2 - 8 x + 5}{(x - 2)^2}$		
1° Déterminer deux nombres réels a et b tels que pour tout x de] -2 , $+\infty$ [: $f(x) = a + \frac{b}{(x-2)^2}$		
2° En déduire la primitive F de f sur] 2 , + ∞ [telle que F(3) = 1.		
1° Déterminer deux nombres réels a et b tels que la fonction F définie sur $]-\frac{1}{2}, +\infty$ [par :		
$F(x) = (a x + b) \sqrt{2 x + 1}$ soit une primitive de la fonction f définie sur $]-\frac{1}{2}$, $+\infty$ [par : $f(x) = \sqrt{2 x + 1}$.		
2° Déterminer la primitive G de f telle que $G(0) = 7$.		
Determiner la primitive G de f telle que G(0) = 7. Déterminer les primitives de a) f définie sur] – 1, 1 [par f(x) = $\frac{2}{\sqrt{1-x^2}}$ b) f définie sur] – $\frac{1}{3}$, $\frac{1}{3}$ [par f (x) = $\frac{2}{\sqrt{1-9}}$		
c) f définie sur IR par $f(x) = \frac{-3}{1+4x^2}$		
Coefficients et primitive à trouver Soit .f la fonction définie sur] $0, + \infty$ [par : $f(x) = \frac{2x^2 - 3x + 2}{x(1 + x^2)}$		
I° Déterminer deux nombres réels a et b tels que, pour tout x de] $0, +\infty$ [, $f(x) = \frac{a}{x} + \frac{b}{1+x^2}$		

2° En déduire la primitive F de f sur] 0, +∞ [telle que : F(1) = π

1 $f(t) = (7 t - 5)^2 F(t) = \frac{(7 x - 5)^3}{21} b) f(x) = 2 (3 x - 2)^3; F(x) = \frac{(3 x - 2)^4}{6}$		
3 $f(x) = \frac{-4}{x-1} F(x) = -4 \ln(x-1)$.	$f(t) = {-4 \over 2 t - 1}$ $F(t) = -2 \ln (1 - 2 t)$.	
$f(x) = 2 x + 1 - \frac{1}{2 x + 3}$. $F(x) = x^2 + \frac{1}{x} + \frac{3}{2 x^2}$	4 $f(x) = x^2 - \frac{1}{x^2} F(x) = \frac{x^3}{3} + \frac{1}{x}$	
$f(x) = 1 - \frac{1}{x^2} - \frac{3}{x^3} F(x) = x + \frac{1}{x} + \frac{3}{2x^2}$	$f(x) = -\frac{1}{(x-3)^2} F(x) = \frac{1}{x-3}$	
2 $f(t) = \frac{2}{1-2t} + \frac{3}{(1-2t)^2}$ $F(t) = -\ln(2t-1) + \frac{3}{2t}$	$\frac{3}{(1-2t)} \qquad f(x) = \frac{x}{(3x^2+1)^2} \qquad F(x) = \frac{\ln(3x^2+1)}{6}$	
$\boxed{3} \frac{x^2 - x + 4}{x^2 - x - 6} = 1 - \frac{2}{x + 2} + \frac{2}{x - 3} \qquad \qquad F(x) = x - 2\ln(x + 2) + 2\ln(x - 3)$		
4 f (t) = -2 sin (3 t + $\frac{\pi}{4}$). F(t) = $\frac{2}{3}$ cos (3 t + $\frac{\pi}{4}$)	$f(t) = 3 \cos(2 t + \frac{\pi}{3})$. $F(t) = \frac{3}{2} \sin 2 t + \frac{\pi}{3}$	
$5 f(x) = \tan x \cdot F(x) = \ln (\cos x)$	6 $f(x) = \sin x \cos^3 x$. $F(x) = -\frac{1}{4} (\cos x)^4$	
$f(t) = \cos t \sin^2 t$. $F(t) = \frac{1}{3} (\sin t)^3$	$\boxed{7 \cos^3 t = \frac{\cos 3 x + 3 \cos x}{4} F(t) = \frac{\sin 3 x - 9 \sin x}{12}}$	
$\sin 2 t \cos 3 t = \frac{\sin 5 t - \sin t}{10} F(t) = \frac{-\cos 5 t + 5 \cos t}{10}$	$\cos^3 2t = \frac{\cos 4 t + 1}{2}$ $F(t) = \frac{\sin 4 t + 4 t}{8}$	
$\sin 2 x \cos x = \frac{\sin 3 x + \sin x}{2}$ $F(t) = \frac{-\cos 3 x - \cos x}{6}$	[8] $f(t) = \frac{2}{\sqrt{3-t}} F(t) = -4\sqrt{3-t}$	
$f(x) = -\frac{3}{\sqrt{3 x + 1}}F(x) = -2\sqrt{3 x + 1}$	9 $f(t) = -e^{-2t} + 3e^{t}$ $F(t) = \frac{1}{2}e^{-2t} + 3e^{t}$	
10 $F'(x) = (a x + a + b) e^x$. $\begin{cases} a = 3 \\ a + b = -1 \end{cases}$ $F(x) = (3x - 4) e^x$		
11 $f(x) = \frac{2}{2x+1}$. $F(x) = \ln\left(\frac{2x+1}{11}\right)$	$g(x) = \frac{2}{2 x + 1}$ $G(x) = \ln \left(\frac{ 12 x + 11 }{5} \right)$	
$ \begin{array}{ c c c c c }\hline 11 & f(x) = \frac{2}{2 & x + 1}. & F(x) = \ln\left(\frac{2 & x + 1}{11}\right) & g(x) = \frac{2}{2 & x + 1}. & G(x) = \ln\left(\frac{ 12 & x + 11 }{5}\right) \\ \hline 12 & \frac{2 & x^2 - 8 & x + 5}{(x - 2)^2} = 2 - \frac{3}{(x - 2)^2} & F(x) = 2 & x - 8 + \frac{3}{x - 2} \end{array} $		
$\boxed{12} \ F'(x) = \frac{3 \ a \ x + a + b}{\sqrt{2 \ x + 1}} = \sqrt{2 \ x + 1} \iff 3 \ a \ x + a + b = 2 \ x + 1 \iff \begin{cases} 3 \ a = 2 \\ a + b = 1 \end{cases}$		
$G(x) = F(x) + \frac{20}{3}$ $13 f(x) = \frac{2}{\sqrt{1 - x^2}} F(x) = 2 \text{ arcsin } x$ $f(x) = \frac{2}{\sqrt{1 - 9x^2}} F(x) = \frac{2}{3} \text{ arcsin } (3x)$		
$f(x) = \frac{-3}{1+4 x^2} F(x) = -\frac{3}{2} \arctan (2 x) \boxed{22} f(x) = \frac{2 x^2 - 3 x + 2}{x (1+x^2)} = \frac{2}{x} - \frac{3}{x^2+1} F(x) = 2 \ln x - 3 \arctan x + \frac{7 \pi}{4}$		