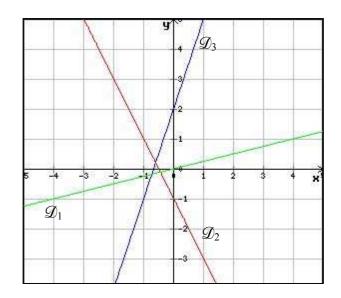
1 5 points

- 1° Donner par lecture graphique l'expression de chacune des fonctions affines représentées graphiquement cidessous.
- 2° Déterminer, par le calcul, la fonction affine dont la représentation graphique passe par les points A (2; -1) et B (-2; 4).



2 8 points

On considère, ci-contre, la représentation graphique d'une fonction f.

A l'aide de cette représentation graphique,

1° Donner l'ensemble de définition de la fonction f.

2° Reconier et compléter le tableau de valeurs

2 1000	0101 00	compie	101 10 10	ioreaa ae	varears.	
x						
f(x)						

- 3° Tracer le tableau de variation de f.
- 4° Résoudre graphiquement :

a)
$$f(x) \le 0$$

b)
$$f(x) = 1.5$$

$$|b| f(x) = 1.5$$
 $|c| f(x) \ge 1.5$

- 5° Soit la fonction g définie sur \mathbb{R} par : $g(x) = \frac{2x-5}{4}$
- a) La fonction g est-elle une fonction affine?
- b) Sur le graphique ci-contre, tracer la courbe représentative de la fonction g et résoudre graphiquement l'inéquation $f(x) \le g(x)$

Résoudre dans IR les équations suivantes.

10	2 x	1 - 3 x	-x+1
1	3	- 6	2

20	2x-1	. 2
2	$\frac{3x+2}{}$	• 3

$$3 \circ \frac{2x+1}{x-1} - \frac{2}{x} = \frac{2}{x^2-x}$$

4 2 points

Recopier et remplir le tableau suivant.	Vrai	Faux
$1^{\circ} f(x) = \frac{\sqrt{2}}{3}$ est une fonction affine.		
2° La courbe représentative d'une fonction constante est une droite parallèle à l'axe des ordonnées.		
$3^{\circ} g(x) = a x$ où $a \in \mathbb{R}$, est l'expression d'une fonction linéaire.		
4° La représentation graphique d'une fonction linéaire est une droite parallèle à l'axe des abscisses.		

1° Donner par lecture graphique l'expression de chacune des fonctions affines représentées graphiquement ci-dessous.

$$\mathcal{Q}_1: f_1(x) = \frac{x}{4}$$

$$\mathcal{D}_2: f_2(x) = -1 - 2x$$

 $\mathcal{D}_3: f_3(x) = 2 + 3 x$

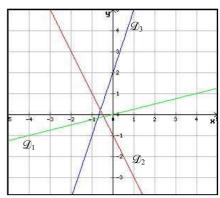
2° Déterminer, par le calcul, la fonction affine dont la représentation graphique passe par les points A (2;-1) et B (-2;4).

Calcul du coefficient directeur :
$$\frac{y_B - y_A}{x_B - x_A} = \frac{4 - (-1)}{-2 - 2} = -\frac{5}{4}$$

Calcul de
$$b : A \in (AB) \Leftrightarrow f(2) = -1 \Leftrightarrow -\frac{5}{4} \times 2 + b = -1$$

$$\Leftrightarrow b = -1 + \frac{5}{2} \Leftrightarrow b = \frac{3}{2}$$

$$f(x) = -\frac{5x}{4} + \frac{3}{2}$$



On considère, ci-contre, la représentation graphique d'une fonction f. A l'aide de cette représentation graphique, 1° Donner l'ensemble de définition de la fonction f.

$$D_f = [-3; 4,5]$$

at complétar la tableau de valeurs

<u> </u>	ecopier et completer le tableau de valeurs.												
x	- 3	-2,5	- 1,5	- 1	-0,5	0	0,5	1	1,5	2,5	3	4	4,5
f(x)	-2	0	- 3	- 3	-1,5	0	1,5	2,5	1,5	0	-0,5	0	1

3° Tracer le tableau de variation de f

٧	Tracci	i ic tar	neau ue var	iation ucj.			
	x	- 3	-2,5	- 1	1	3	4,5
	f(x)	-2	• 0	_3	2,5	-0,5	V 1

$$a) f(x) \le 0$$

$$(b) f(x) = 1,$$

$$c) f(x) \ge 1.5$$

a)
$$f(x) \le 0$$
 | b) $f(x) = 1.5$ | c) $f(x) \ge 1.5$
S = [-3.5; 0] \cup [2.5; 4] | S = {0.5; 1.5} | S = [0.5; 1.5]

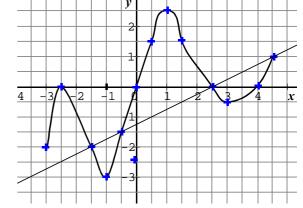
c)
$$f(x) \ge 1,3$$

S = [0.5 · 1.5]

5° Soit la fonction
$$g$$
, définie sur \mathbb{R} par, $g(x) = \frac{2x-5}{4}$

a) La fonction g est-elle une fonction affine?

$$g(x) = \frac{x}{2} - \frac{5}{4}$$
 donc g est une fonction affine.



b) Sur le graphique ci-contre, tracer la représentation graphique de g et résoudre graphiquement l'inéquation $f(x) \le g(x)$ $S = [-1,5; -0,5] \cup [2,5; 4,5]$

3 Résoudre dans IR les équations suivantes.

$$1^{\circ} \frac{2x}{3} - \frac{1-3x}{6} = \frac{x+1}{2}$$

$$\Leftrightarrow \frac{4x}{6} - \frac{1-3x}{6} = \frac{3(x+1)}{6}$$

$$\Leftrightarrow 4x - 1 + 3x = 3x + 3$$

$$\Leftrightarrow x = 1$$

$$S = \{1\}$$

$$2^{\circ} \quad \frac{2x-1}{3x+2} = 3$$
Valeur interdite: $-\frac{2}{3}$

$$2x-1=3 (3x+2)$$

$$\Leftrightarrow 2x-1=9x+6$$

$$\Leftrightarrow -1-6=7x$$

$$\Leftrightarrow x=-1$$

$$S = \{-1\}$$

$$3 \circ \frac{2x+1}{x-1} - \frac{2}{x} = \frac{2}{x^2 - x}$$
Valeur interdite: 0 et 1
$$\frac{x(2x+1) - 2(x-1)}{x^2 - x} = \frac{2}{x^2 - x}$$

$$\Leftrightarrow 2x^2 + x - 2x + 2 = 2$$

$$\Leftrightarrow 2x^2 - x = 0$$

$$\Leftrightarrow x(2x-1) = 0$$

$$\Leftrightarrow x = 0 \text{ ou } x = \frac{1}{2}$$
0 est une valeur interdite donc

Vrai

Faux

 $S = \left\{ \frac{1}{2} \right\}$

4 Recopier et remplir le tableau suivant :	Viai	raux
$f(x) = \frac{\sqrt{2}}{3}$ est une fonction affine.	Vraie	
La représentation graphique d'une fonction constante est une droite parallèle à l'axe des ordonnées.		Faux
$g(x) = a x$ où $a \in \mathbb{R}$, est l'expression d'une fonction linéaire.	Vrai	
La représentation graphique d'une fonction linéaire est une droite parallèle à l'axe des abscisses.		Faux