FONCTIONS USUELLES

I FONCTIONS AFFINES

1° Définition

a et b sont deux réels donnés. Lorsqu'à chaque réel x, on associe le réel a x + b, on définit une fonction affine f et on note f(x) = a x + b.

EXEMPLES: Les fonctions f et g respectivement définies sur \mathbb{R} par f(x) = 3 x + 5 et g(x) = 2 x - 7 sont des fonctions affines.

Lorsque b = 0, la fonction est dite linéaire, comme par exemple f(x) $x \mapsto 3$ x.

Lorsque a = 0, la fonction est dite constante, comme par exemple, f(x) = 3, pour tout réel x.

2° Représentation graphique

La représentation graphique d'une fonction affine est une droite d. Toute droite d non parallèle à l'axe des ordonnées est la représentation graphique d'une fonction affine.

3° Equation de droite

Si f est définie par f(x) = a x + b, alors une équation de cette droite d est y = a x + b.

Le nombre a est appelé le coefficient directeur de la droite d. .

La droite d passe par le point B (0; b), on dit que b est l'ordonnée à l'origine.

4° Fonctions affines et taux de variation

f est une fonction affine définie par f(x) = a x + b.

Alors pour tous u et v tels que u v, $\frac{f(u) - f(v)}{u - v} = a$ Ce rapport est appelé taux de variation de f entre u et v.

DÉMONSTRATION u et v sont des réels.

Alors
$$f(u) = a u + b$$
 et $f(v) = a v + b$ donc $f(u) - f(v) = (a u + b) - (a v + b) = a u - a v = a (u - v)$ d'où $\frac{f(u) - f(v)}{u - v} = a$

5° propriété caractéristique

f est une fonction définie sur \mathbb{R} et telle que les réels $\frac{f(u)-f(v)}{u-v}$ sont tous égaux à un réel a.

Alors f est la fonction affine définie par f(x) = a x + f(0).

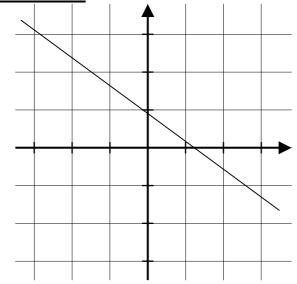
DÉMONSTRATION

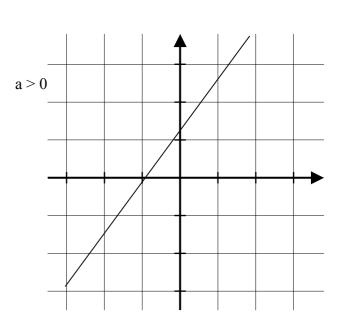
Par hypothèse pour tous u et v, $\frac{f(u) - f(v)}{u - v} = a$. Donc en particulier si v = 0

$$\frac{f(u) - f(0)}{u - 0} = a \text{ donc } f(u) - f(0) = a \times u \text{ donc } f(u) = a u + f(0)$$

Donc f est la fonction affine $x \mapsto a x + f(0)$.

a < 0





II LA FONCTION CARREE

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2$.

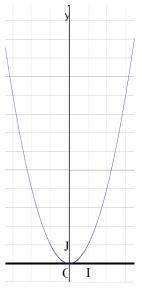
f est définie sur IR.

1° Représentation graphique de f.

Etablir un tableau de valeurs en utilisant la calculatrice.

X	- 3	$-\frac{5}{2}$	-2	$-\frac{3}{2}$	- 1	$-\frac{1}{2}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	1	$\frac{3}{2}$	2	<u>5</u> 2	3
f(x)	9	$\frac{25}{4}$	4	$\frac{9}{4}$	1	$\frac{1}{4}$	$\frac{1}{16}$	0	$\frac{1}{16}$	$\frac{1}{4}$	1	$\frac{9}{4}$	4	<u>25</u> 4	9

La courbe représentative de f est appelée une parabole.



2° Etude de la parité de f

Soit $x \in \mathbb{R}$, comparer f(x) et f(-x).

$$f(-x) = (-x)^2 = x^2 = f(x)$$
.

Définition:

On dit que f est une fonction paire si et seulement si on a :

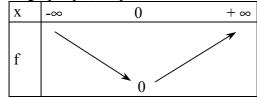
- D_f est symétrique par rapport à 0
- Pour tout réel x f(-x) = f(x)

Graphiquement, cela signifie que les points M(x ; f(x)) et M'(-x ; f(-x)) qui sont des points de la courbe représentative de f sont symétriques par rapport à l'axe des ordonnées.

La représentation graphique de f admet donc l'axe des ordonnées pour axe de symétrie.

3° Sens de variation de f

D'après le graphique, on peut établir le tableau de variation de f.



f est strictement croissante sur $[0; +\infty[$. f est strictement décroissante sur $]-\infty; 0]$.

Calcul du taux d'accroissement (ou de variation) de f entre a et b :

$$\frac{f(b) - f(a)}{b - a} = \frac{b^2 - a^2}{b - a} = b + a.$$

Si a et b sont positifs ou nuls, alors a + b > 0 et comme a - b < 0, on déduit que f(a) - f(b) < 0Donc f est strictement croissante sur $[0 : +\infty[$.

Si a et b sont négatifs ou nuls, alors a+b < 0 et comme a-b < 0, on déduit que f(a)-f(b) > 0Donc f est strictement décroissante sur]- ∞ ; 0].

4° Résolution d'équations

Résoudre les équations suivantes :

$$\bullet \ \ x^2 = 0$$

$$\bullet \ \ x^2 = 1$$

$$\bullet x^2 = -$$

Résoudre les inéquations suivantes :

$$\bullet \ \ x^2 \le \frac{1}{4}$$

$$\bullet \ \ x^2 > 4$$

•
$$x^2 < -1$$

III LA FONCTION INVERSE

Soit la fonction g définie sur \mathbb{R}^* par $g(x) = \frac{1}{x}$.

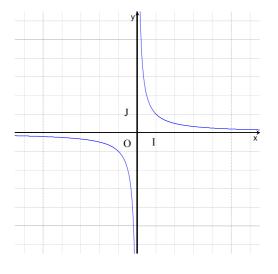
g est définie sur $\mathbb{R}^* =]-\infty$; $0[\cup]0$; $+\infty[$.

1° représentation graphique

Tableau de valeurs :

Tubleud de Valedib .										
X	- 5	- 3	$-\frac{5}{2}$	-2	$-\frac{3}{2}$	- 1	$-\frac{1}{2}$	$-\frac{1}{4}$		
g(x)	$-\frac{1}{5}$	$-\frac{1}{3}$	$-\frac{2}{5}$	$-\frac{1}{2}$	$-\frac{2}{3}$	- 1	- 2	-4		
$\frac{1}{4}$	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	5			
4	2	1	$\frac{2}{3}$	$\frac{1}{2}$	<u>2</u> 5	$\frac{1}{3}$	1/5			

La courbe représentative de g s'appelle une hyperbole.



2° Etude de la parité de g

Soit $x \in \mathbb{R}$, comparer g(x) et g(-x). Pour tout réel x de \mathbb{R}^* , $g(-x) = \frac{1}{-x} = -\frac{1}{x} = -g(x)$.

On dit que g est une fonction impaire.

Définition:

On dit que g est une fonction impaire si et seulement si on a :

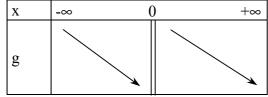
- . D_g est symétrique par rapport à 0
- Pour tout réel x, g(-x) = -g(x)

Graphiquement, cela signifie que les points M(x; g(x)) et M'(-x; g(-x)) qui sont des points de la courbe représentative de g sont symétriques par rapport à l'origine O du repère.

La représentation graphique de g admet donc l'origine O du repère pour centre de symétrie.

3° Sens de variation de g

D'après le graphique, on peut établir le tableau de variation de g.



g est strictement décroissante sur]- ∞ ; 0[g est strictement décroissante sur]0; + ∞ [.

Calcul du taux d'accroissement (ou de variation) de f entre a et $b : a \neq b$.

$$\frac{f(b) - f(a)}{b - a} = \frac{\frac{1}{b} - \frac{1}{a}}{b - a} = \frac{\frac{a - b}{a b}}{b - a} = -\frac{1}{a b}.$$

• Si a et b sont strictement positifs , alors $a \times b > 0$ on déduit que f(b) - f(a) < 0 d'où f(a) > f(b)Donc f est strictement décroissante sur $[0; +\infty[$.

Si a et b sont strictement négatifs , alors $a \times b > 0$ on déduit que f(b) - f(a) < 0 d'où f(a) > f(b)Donc f est strictement décroissante sur $] - \infty$; 0].

• Si a et b sont strictement positifs, ab > 0 et comme b - a > 0, on déduit que g(a) - g(b) > 0Donc g est strictement décroissante sur]0; $+\infty[$.

Si a et b sont strictement négatifs, ab < 0 et comme b – a > 0, on déduit que g(a) - g(b) > 0Donc g est strictement décroissante sur]- ∞ ; 0[.

4° Résolution d'inéquations

Résoudre les inéquations suivantes :

$$\bullet \ \frac{1}{x} \le \frac{1}{4}$$

$$\bullet \frac{1}{x} > 4$$

$$\bullet \frac{i}{x} < -1$$