Exercice I

On considère la fonction f définie sur \mathbb{R} par : $f(x) = x + \frac{1 - e^x}{1 + e^x}$

On désigne par C sa courbe représentative (unité graphique 2 cm).

1° Montrer que cette fonction est impaire.

2° Montrer que, pour
$$x \in \mathbb{R}$$
, on $a : f(x) = x + 1 - \frac{2e^x}{e^x + 1} = x - 1 + \frac{2}{e^x + 1}$

- 3° Calculer les limites de f en $+ \infty$ et ∞ .
- 4° Prouver que les droites D : y = x + 1 et D ': y = x 1 sont asymptotes à la courbe C.
- 5° Etudier les variations de la fonction f.
- 6° Déterminer l'équation de la tangente T à C au point d'abscisse 0.

Soit g la fonction définie sur \mathbb{R} par : $g(x) = f(x) - \frac{x}{2}$. Démontrer que la fonction g est décroissante.

En déduire la position de C par rapport à T

7° Tracer la courbe C et les droites D, D'et T.

Exercice II

Soit la suite de points M, du plan complexe d'affixes respectives définies par :

$$z_0=8 \text{ et pour tout } n \in {\rm I\! N}, \ z_{n+1}=\frac{1+i\sqrt{3}}{4}\,z_n.$$

- 1° Calculer le module et un argument de $\frac{1+i\sqrt{3}}{4}$. Ecrire ce nombre complexe sous forme trigonométrique.
- $2^{\circ}\,\text{Calculer}\,\,z_{\!\scriptscriptstyle 1},\,z_{\!\scriptscriptstyle 2},\,z_{\!\scriptscriptstyle 3}\,\,\text{et}\,\,\text{v\'erifier}\,\,\text{que}\,\,z_{\!\scriptscriptstyle 3}\,\,\text{est}\,\,\text{r\'eel}.\,\,\text{Placer}\,\,\text{dans}\,\,\text{le}\,\,\text{plan}\,\,\text{les}\,\,\text{points}\,\,M_0,\,M_1,\,M_2\,\,\text{et}\,\,M_3$
- 3° Calculer le rapport $\frac{Z_{n+1}-Z_n}{Z_{n+1}}$ et en déduire que le triangle OM_nM_{n+1} est rectangle et que :

$$\left|\,z_{n+1}\,-\,z_{n}\,\right|\,=\,\sqrt{3}\,\left|\,z_{n+1}\,\right|$$

Exercice III

- 1° Ecrire sous forme trigonométrique le complexe 1 + i.
- 2° On pose $z = \rho e^{i\theta}$ avec $\rho \in]0, +\infty[$ et $\theta \in [0; \frac{\pi}{2}]$
- 2° a) Calculer z^2 et (1+i) \overline{z} en fonction de ρ et θ (\overline{z} désignant le complexe conjugué de z)
- b) En déduire la valeur r de ρ pour laquelle on a l'égalité : (1) $z^2 = (1 + i) \overline{z}$.
- c) Déterminer les valeurs θ_0 , θ_1 et θ_2 de θ telles que $z = \rho e^{i\theta}$ vérifie l'égalité (1).

On note respectivement z_0 , z_1 et z_2 les nombres complexes de module r et d'arguments θ_0 , θ_1 et θ_2 .

3° Soit A₁ et A₂ les points d'affixes respectives : $z_1 - z_0$, et $z_2 - z_0$ dans le plan complexe, et O le point d'affixe

nulle. Calculer, sous sa forme trigonométrique, le nombre complexe : $\frac{z_2-z_0}{z_1-z_0}$

En déduire que le triangle OA_1A_2 est équilatéral.