Polynésie 2004 ex3 1°
$$f_k(x) = x + \frac{1 - k e^x}{1 + k e^x}$$

$$a) \left(f_k(x) - x \right)^2 + 1 = \left(\frac{1 - k \ e^x}{1 + k \ e^x} \right)^2 + 1 = \frac{(1 - k \ e^x)^2 + (1 + k \ e^x)^2}{(1 + k \ e^x)^2} = \frac{1 - 2 \ k \ e^x + k^2 \ e^{2 \ x} + 1 + 2 \ k \ e^x + k^2 \ e^{2 \ x}}{(1 + k \ e^x)^2} = \frac{2 + 2 \ k^2 \ e^{2 \ x}}{(1 + k \ e^x)^2} = \frac{1 - 2 \ k \ e^x + k^2 \ e^{2 \ x} + 1 + 2 \ k \ e^x + k^2 \ e^{2 \ x}}{(1 + k \ e^x)^2} = \frac{2 + 2 \ k^2 \ e^{2 \ x}}{(1 + k \ e^x)^2} = \frac{1 + 2 \ k \ e^x + k^2 \ e^{2 \ x} - k \ e^x + k^2 \ e^2}{(1 + k \ e^x)^2} = \frac{1 + k^2 \ e^{2 \ x}}{(1 + k \ e^x)^2}$$

On a bien : $2 f_k'(x) = (f_k(x) - x)^2 + 1$ donc f_k est bien solution de l'équation : $2 y' = (y - x)^2 + 1$ 2° pour tout réel x, $f_k'(x) > 0$ donc f_k est croissante sur \mathbb{R} .

$$f_k(0) = 0 \Leftrightarrow 0 + \frac{1 - k e^0}{1 + k e^0} = 0 \Leftrightarrow k = 1$$
. \mathscr{C} est la représentation graphique de la courbe \mathscr{C} .

$$f_k(1) = 1 \Leftrightarrow 1 + \frac{1 - k e}{1 + k e} = 1 \Leftrightarrow 1 - k e = 0 \Leftrightarrow k = \frac{1}{e}$$

3° On ne le demande pas mais rien ne nous empêche de vérifier que $f_k(x) = x - 1 + \frac{2}{1 + k e^x} = x + 1 - \frac{2 k e^x}{1 + k e^x}$

$$x - 1 + \frac{2}{1 + k e^x} = x + \frac{-(1 + k e^x) + 2}{1 + k e^x} = x + \frac{1 - k e^x}{1 + k e^x} = f_k(x)$$

$$x + 1 - \frac{2 k e^{x}}{1 + k e^{x}} = x + \frac{1 + k e^{x} - 2 k e^{x}}{1 + k e^{x}} = x + \frac{1 - k e^{x}}{1 + k e^{x}} = f_{k}(x)$$

Pour tout réel $x, \frac{2}{1+k e^x} > 0$ donc $f_k(x) \ge x-1$ et donc \mathscr{C}_k est au dessus de \mathscr{D} '

Pour tout réel x, $-\frac{2 k e^x}{1 + k e^x} < 0$ donc $f_k(x) \le x + 1$ et donc \mathscr{C}_k est au dessous de \mathscr{D}

 $\lim_{x \to -\infty} e^x = 0$ donc $\lim_{x \to -\infty} \frac{2 k e^x}{1 + k e^x} = \frac{2 \times 0}{1 + k \times 0} = 0$. la droite \mathscr{D} est donc asymptote à \mathscr{C}_k en $-\infty$.

 $\lim_{x \to +\infty} e^x = +\infty \quad \text{donc } \lim_{x \to -\infty} \frac{2}{1 + k e^x} = 0. \text{ la droite } \mathscr{D}' \text{ est donc asymptote à } \mathscr{C}_k \text{ en } \infty.$

$$4^{\circ} \ a) \ f_{1}(x) = x + \frac{1 - e^{x}}{1 + e^{x}} \qquad f_{1}(-x) = -x + \frac{1 - e^{-x}}{1 + e^{-x}} = -x + \frac{e^{x} \left(1 - e^{-x}\right)}{e^{x} \left(1 + e^{-x}\right)} = -x + \frac{e^{x} - 1}{e^{x} + 1} = -\left(x + \frac{1 - e^{x}}{1 + e^{x}}\right) = -f_{1}(x)$$

la fonction f_1 est impaire.

b) Si
$$x > 0$$

 f_1 est croissante sur \mathbb{R} donc : $x > 0 \Rightarrow f_1(x) > f_1(0) \Rightarrow f_1(x) > 0$.

 $\int_0^x f_1(t) dt$ représente, en unité d'aire, l'aire de la partie du plan limitée par la courbe \mathscr{C}_1 l'axe des abscisses et les droites d'équation "Y = 0" et "X = x".

Si x < 0

 f_1 est croissante sur \mathbb{R} donc : $x < 0 \Rightarrow f_1(x) < f_1(0) \Rightarrow f_1(x) < 0 \Rightarrow -f_1(x) > 0$.

 $\int_{\mathbf{v}}^{0} -f_1(t) dt$ représente, en unité d'aire, l'aire de la partie du plan limitée par la courbe \mathcal{C}_1 l'axe des abscisses et les droites d'équation "Y = 0" et "X = x".

 $\int_0^x f_1(t) dt = -\int_x^0 f_1(t) dt = \int_x^0 -f_1(t) dt$ représente, en unité d'aire, l'aire de la partie du plan limitée par la courbe \mathcal{E}_1 l'axe des abscisses et les droites d'équation "Y = 0" et "X = x".

La fonction f_1 est impaire donc la partie du plan limitées par \mathcal{E}_1 , (OX) et les droites "X = x" et "X = 0" a la même aire que celle limitée par \mathcal{C}_1 , (OX) et les droites "X = -x" et "X = 0"

Donc pour tout réel x, F(x) = F(-x). la fonction F est paire.

d)
$$f_1(t) = t + 1 - \frac{2e^t}{1 + e^t}$$

On pose: $u(t) = 1 + e^t$ et donc $u'(t) = e^t$.

On
$$a - \frac{2 e^t}{1 + e^t} = -2 \frac{u'(t)}{u(t)}$$

La fonction $t \longrightarrow -\frac{2 e^{\tau}}{1 + e^{t}}$ admet comme primitive la fonction : $t \longrightarrow -2 \ln(|u(t)|)$

$$F(x) = \left[\frac{t^2}{2} + t - 2\ln(1 + e^t)\right]_0^x = \frac{x^2}{2} + x - 2\ln(1 + e^x) - (-2\ln(1 + 1)) = \frac{x^2}{2} + x - 2\ln(1 + e^x) + 2\ln 2.$$

