Polynésie mai 2004

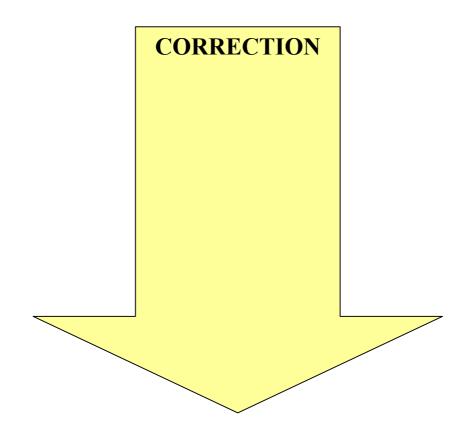
- 1° Pour tout réel k positif ou nul, on considère la fonction f_k définie sur \mathbb{R} par : $f_k(x) = x + \frac{1 k}{1 + k} \frac{e^x}{e^x}$.
- a) Justifier que, pour tout réel k positif ou nul, la fonction f_k est solution de l'équation différentielle : $(E): 2 \text{ y'} = (y-x)^2 + 1.$
- b) En déduire le sens de variations de f_k sur \mathbb{R} .
- 2° On note C_k la courbe représentative de la fonction f_k dans un repère orthonormal $(O; \vec{i}; \vec{j})$. Sur l'annexe, on a représenté la droite D d'équation y = x 1, la droite D' d'équation y = x + 1 et plusieurs courbes C_k correspondant à des valeurs particulières de k.

Déterminer le réel k associé à la courbe C passant par le point O puis celui associé à la courbe C' passant par le point A de coordonnées (1; 1).

3° On remarque que, pour tout x réel, on a :
$$f_k(x) = x - 1 + \frac{2}{1 + k e^x}$$
 (1) et $f_k(x) = x - 1 - \frac{2 k e^x}{1 + k e^x}$ (2).

En déduire pour tout k strictement positif :

- la position de la courbe C_k par rapport aux droites D et D';
- les asymptotes de la courbe C_k.
- 4° Cas particulier : k = 1.
- a) Justifier que f_1 est impaire.
- b) Soit la fonction F définie sur \mathbb{R} par : $F(x) = \int_0^x f_1(t) dt$. Interpréter graphiquement le réel F(x) dans les deux cas : x > 0 et x < 0. Déterminer alors la parité de F à l'aide d'une interprétation graphique.
- c) Déterminer les variations de F sur R.
- d) En utilisant l'égalité (2), calculer explicitement F(x).



1° Pour tout réel k positif ou nul, on considère la fonction f_k définie sur \mathbb{R} par : $f_k(x) = x + \frac{1 - k}{1 + k} \frac{e^x}{e^x}$. a) Justifier que, pour tout réel k positif ou nul, la fonction f_k est solution de l'équation différentielle : (E) : 2 y ' = $(y - x)^2 + 1$

Pour tout réel x:

$$f_{k}'(x) = 1 + \frac{-k e^{x} (1 + k e^{x}) - (1 - k e^{x}) k e^{x}}{(1 + k e^{x})^{2}} = \frac{(1 + k e^{x})^{2} - k e^{x} - k^{2} e^{2 x} - k e^{x} + k^{2} e^{2 x}}{(1 + k e^{x})^{2}}$$

$$= \frac{1 + 2 k e^{x} + k^{2} e^{2 x} - 2 k e^{x}}{(1 + k e^{x})^{2}} = \frac{1 + k^{2} e^{2 x}}{(1 + k e^{x})^{2}}$$

$$(f_{k}(x) - x)^{2} + 1 = \left(\frac{1 - k e^{x}}{1 + k e^{x}}\right)^{2} + 1 = \frac{1 - 2 k e^{x} + k^{2} e^{2 x} + 1 + 2 k e^{x} + k^{2} e^{2 x}}{(1 + k e^{x})^{2}} = \frac{2 + 2 k^{2} e^{2 x}}{(1 + k e^{x})^{2}} = 2 f_{k}'(x)$$

 f_k est bien solution de (E).

b) En déduire le sens de variations de f_k sur IR.

Pour tout réel x : $f_k'(x) = (f_k(x) - 1)^2 \ge 0$ donc f_k est croissante sur \mathbb{R}

2° On note C_k la courbe représentative de la fonction f_k dans un repère orthonormal $(0; \vec{i}; \vec{j})$. Sur l'annexe, on a représenté la droite D d'équation y = x - 1, la droite D' d'équation y = x + 1 et plusieurs courbes C_k correspondant à des valeurs particulières de k. Déterminer le réel k associé à la courbe C passant par le point O puis celui associé à la courbe C' passant par le point A de

$$O \in C_k \Leftrightarrow f_k(0) = 0 \Leftrightarrow 0 + \frac{1 - k}{1 + k} \frac{e^0}{e^0} = 0 \Leftrightarrow \frac{1 - k}{1 + k} = 0 \Leftrightarrow 1 - k = 0 \text{ et } 1 + k \neq 0 \Leftrightarrow k = 1. C = C_1$$

$$A \in C_k \Leftrightarrow f_k(1) = 1 \Leftrightarrow 1 + \frac{1 - k}{1 + k} \frac{e^1}{e^1} = 1 \Leftrightarrow \frac{1 - k}{1 + k} \frac{e}{e} = 0 \Leftrightarrow 1 - k = 0 \text{ et } 1 + k = 0 \Leftrightarrow k = \frac{1}{e}$$

3° On remarque que, pour tout x réel, on a : $f_k(x) = x - 1 + \frac{2}{1 + k e^x}$ (1) et $f_k(x) = x - 1 - \frac{2 k e^x}{1 + k e^x}$ (2). En déduire pour tout k strictement positif: - la position de la courbe C_k par rapport aux droites D et D'; - les asymptotes de la courbe C_k .

$$f_k(x) - (x - 1) = \frac{2}{1 + k e^x} > 0$$
 donc C_k est toujours au dessus de D

$$f_k(x) - (x+1) = -\frac{2 k e^x}{1 + k e^x} < 0$$
 donc C_k est toujours au dessous de D'

On pose
$$X = k e^x$$
 on $a : \lim_{x \to +\infty} k e^x = +\infty \ (k \ge 0)$ donc $\lim_{x \to +\infty} f_k(x) - (x-1) = \lim_{x \to +\infty} \frac{2}{1+k e^x} = \lim_{x \to +\infty} \frac{2}{1+X} = 0$

D est asymptote à C_k en $+ \infty$.

On pose X = k e^x On a :
$$\lim_{x \to -\infty} k e^x = 0$$
 donc $\lim_{x \to -\infty} f_k(x) - (x+1) = \lim_{x \to 0} \frac{2X}{1+X} = 0$

Donc D' est est asymptote à C_k en $-\infty$.

4° Cas particulier: k = 1. a) Justifier que f_1 est impaire.

$$f_1(x) = x + \frac{1 - e^x}{1 + e^x}$$

R est symétrique par rapport à 0 et pour tout réel x

$$f_1(-x) = -x + \frac{1 - e^{-x}}{1 + e^{-x}} = -x + \frac{e^x (1 - e^{-x})}{e^x (1 + e^{-x})} = -x + \frac{e^x - 1}{e^x + 1} = -x - \frac{1 - e^x}{1 + e^x} = -f_1(x)$$

f₁ est donc bien paire.

b) Soit la fonction F définie sur \mathbb{R} par : $F(x) = \int_0^x f_1(t) dt$. Interpréter graphiquement le réel F(x) dans les deux cas : x > 0 et x < 0. Déterminer alors la parité de F à l'aide d'une interprétation graphique.

Si x > 0

- c) Déterminer les variations de F sur \mathbb{R} .
- d) En utilisant l'égalité (2), calculer explicitement F(x)