Baccalauréat S Polynésie septembre 2005

On étudie le mouvement aléatoire d'une puce. Cette puce se déplace sur 3 cases notées A,B et C. A l'instant 0, la puce est en A.

Pour tout entier naturel n :

- Si à l'instant n la puce est en A, alors à l'instant (n + 1), elle est :

soit en B avec une probabilité égale à $\frac{1}{3}$

soit en C avec une proba égale à $\frac{2}{3}$.

- Si à l'instant n la puce est en B, alors à l'instant (n + 1), elle est : soit en C, soit en A de façon équiprobable.

- Si à l'instant n la puce est en C, elle y reste.

On note A_n (respectivement B_n et C_n) l'événement " à l'instant n la puce est en A" (respectivement en B, en C). On note a_n (respectivement b_n et c_n) la proba de l'événement A_n (respectivement B_n , C_n).

On a donc : $a_0 = 1$, $b_0 = c_0 = 0$

Pour traiter l'exercice, on pourra s'aider d'arbres pondérés.

1° Calculer a_k , b_k , c_k pour k entier naturel tel que $1 \le k \le 3$.

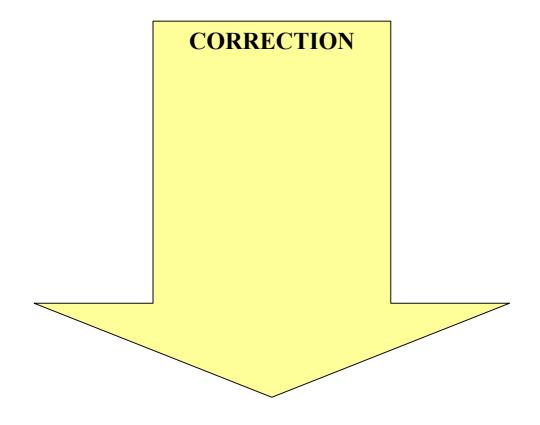
2° a) Montrer que, pour tout entier naturel n,
$$a_n + b_n + c_n = 1$$
 et
$$\begin{cases} a_{n+1} = \frac{1}{2} b_n \\ b_{n+1} = \frac{1}{3} a_n. \end{cases}$$

b) Montrer que pour tout entier naturel n, $a_{n+2} = \frac{1}{6} a_n$.

c) En déduire que pour tout entier naturel p,
$$\begin{cases} a_{2p} = \left(\frac{1}{6}\right)^p \text{ et } a_{2p+1} = 0\\ b_{2p} = 0 \text{ et } b_{2p+1} = \frac{1}{3} \times \left(\frac{1}{6}\right)^p \end{cases}$$

 3° Montrer que $\lim_{n \to +\infty} a_n = 0$

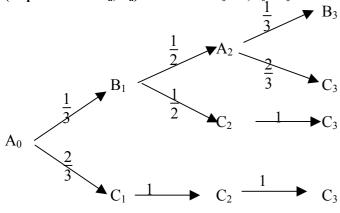
On admet que $\lim_{n \, \to \, +\infty} b_n = 0.$ Quelle est la limite de c_n lorsque n tend vers $+ \infty$.



On étudie le mouvement aléatoire d'une puce. Cette puce se déplace sur 3 cases notées A,B et C. A l'instant 0, la puce est en A. Pour tout entier naturel n : - Si à l'instant n la puce est en A, alors à l'instant (n + 1), elle est : soit en B avec une probabilité

égale à $\frac{1}{3}$ soit en C avec une proba égale à $\frac{2}{3}$. - Si à l'instant n la puce est en B, alors à l'instant (n + 1), elle est : soit en C, soit en

A de façon équiprobable. - Si à l'instant n la puce est en C, elle y reste. On note A_n (respectivement B_n et C_n) l'événement " à l'instant n la puce est en A" (respectivement en B, en C). On note a_n (respectivement b_n et c_n) la proba de l'événement A_n (respectivement B_n , C_n). On a donc : $a_0 = 1$, $b_0 = c_0 = 0$ 1° Calculer a_k , b_k , c_k pour k entier naturel tel que $1 \le k \le 3$.



$$\begin{cases} a_1 = 0 \\ b_1 = \frac{1}{3} \end{cases} \begin{cases} a_2 = \frac{1}{3} \times \frac{1}{2} \\ b_2 = 0 \end{cases} \\ c_1 = \frac{2}{3} \end{cases} \begin{cases} a_2 = \frac{1}{3} \times \frac{1}{2} \end{cases} \begin{cases} a_3 = 0 \\ b_3 = \frac{1}{18} \end{cases} \\ c_3 = \frac{1}{3} \times \frac{1}{2} \times \frac{2}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{2}{3} = \frac{1}{18} + \frac{12}{18} = \frac{17}{18} \end{cases}$$

2° a) Montrer que, pour tout entier naturel n,
$$a_n + b_n + c_n = 1$$
 et
$$\begin{cases} a_{n+1} = \frac{1}{2} b_n \\ b_{n+1} = \frac{1}{3} a_n. \end{cases}$$

A l'instant n la puce est soit en A, soit en B, soit en C. les événements A_n , B_n et C_n forment donc une partition et donc $a_n + b_n + c_n = 1$.

Si la puce est en A à l'instant (n + 1) c'est qu'elle était en B à l'instant n et on a donc :

$$a_{n+1} = p(A_{n+1}) = p_{Bn}(A_{n+1}) \times p(B_n) = \frac{1}{2} \times b_n$$

Si la puce est en B à l'instant (n + 1) c'est qu'elle était en A à l'instant n et on a donc :

$$b_{n+1} = p(B_{n+1}) = p_{A_n}(B_{n+1}) \times p(A_n) = \frac{1}{3} \times a_n$$

b) Montrer que pour tout entier naturel n, $a_{n+2} = \frac{1}{6} a_n$.

Pour tout entier naturel n on a : $a_{n+2} = \frac{1}{2}b_{n+1}$ et $b_{n+1} = \frac{1}{3}a_n$ donc : $a_{n+2} = \frac{1}{2}b_{n+1} = \frac{1}{2} \times \frac{1}{3}a_n = \frac{1}{6}a_n$

c) En déduire que pour tout entier naturel p,
$$\begin{cases} a_{2p} = \left(\frac{1}{6}\right)^p \text{ et } a_{2p+1} = 0 \\ b_{2p} = 0 \text{ et } b_{2p+1} = \frac{1}{3} \times \left(\frac{1}{6}\right)^p \end{cases}$$

On démontre par récurrence sur p que $a_{2p} = \left(\frac{1}{6}\right)^p$ et $a_{2p+1} = 0$

Initialisation : Si
$$p = 0$$
 $a_{2\times 0} = a0 = 1 = \left(\frac{1}{6}\right)^0$ et $a_{2\times 0+1} = a_1 = 0$.

Hérédité : Si $a_{2p} = \left(\frac{1}{6}\right)^p$ et $a_{2p+1} = 0$ alors :

$$a_{2(p+1)} = a_{2p+2} = \frac{1}{6} \, a_{2p} = \frac{1}{6} \times \left(\frac{1}{6}\right)^p = \left(\frac{1}{6}\right)^{p+1} \quad \text{et } a_{2(p+1)+1} = a_{2p+3} = \frac{1}{6} \times a_{2p+1} = 0. \ \text{la propriété est bien vérifiée pour } p + 1.$$

Conclusion: Pour tout entier naturel p, $a_{2p} = \left(\frac{1}{6}\right)^p$ et $a_{2p+1} = 0$

On démontrer que pour tout entier naturel p, $b_{2p} = 0$ et $b_{2p+1} = \frac{1}{3} \times \left(\frac{1}{6}\right)^p$

On a vu que pour tout entier naturel n, $b_{n+1} = \frac{1}{3} a_n$ on a donc :

$$b_{2p} = \frac{1}{3} a_{2p-1} = \frac{1}{3} \times 0 = 0$$
 et $b_{2p+1} = \frac{1}{2} a_{2p} = \frac{1}{3} \times \left(\frac{1}{6}\right)^p$

3° Montrer que $\lim_{n \to +\infty} a_n = 0$ On admet que $\lim_{n \to +\infty} b_n = 0$. Quelle est la limite de c_n lorsque n tend vers $+\infty$.

$$\left|\frac{1}{6}\right| \leq 1 \text{ donc } \lim_{p \to +\infty} \left(\frac{1}{6}\right)^p = 0 \text{ et } \lim_{p \to +\infty} a_{2p} = 0. \text{ On a aussi } \lim_{p \to +\infty} a_{2p+1} = \lim_{p \to +\infty} 0 = 0. \text{ On peut donc dire que } \lim_{n \to +\infty} a_n = 0.$$
 Si $\lim_{n \to +\infty} a_n = 0 = \lim_{n \to +\infty} b_n \text{ alors } \lim_{n \to +\infty} c_n = \lim_{n \to +\infty} (1 - a_n - b_n) = 1.$

Si
$$\lim_{n \to +\infty} a_n = 0 = \lim_{n \to +\infty} b_n$$
 alors $\lim_{n \to +\infty} c_n = \lim_{n \to +\infty} (1 - a_n - b_n) = 1$.